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LETTER TO THE EDITOR 

The two-dimensional XY model in random hexagonal 
anisotropy 

P Reed 
School of Computer Studies and Mathematics, Sunderland Polytechnic, 
Sunderland SR13SD, UK 

Received 13 February 1989 

Abstract. The two-dimensional X Y  model in the presence of random hexagonal anisotropy 
has been investigated by Monte Carlo simulation. The results indicate the existence of two 
continuous transitions as the temperature is reduced. Each of the phases is characterised by 
algebraic decay of the pair correlation functions. 

The static properties of the pure two-dimensional XY model are now believed to be well 
understood from the work of Kosterlitz and Thouless (1973,1974). At low temperatures 
this system exhibits quasiferromagnetism, that is zero magnetisation accompanied by 
algebraic decay of spin-spin correlation functions. At the Kosterlitz-Thouless transition 
temperature TKT vortices that are tightly bound in dipole pairs at low temperature 
become free and the system becomes paramagnetic. This picture of the critical properties 
is supported by the Monte Carlo simulation of Tobochnic and Chester (1979). 

Here the effect of random symmetry breaking anisotropy on the above picture of the 
critical properties is investigated. The Hamiltonian for such a system is given by 

- ( J Z  cos(8, - 0,) + h c cos(Pe, + cp,)) (1) 

where 8, are site variables confined to a square lattice, the first summation is over nearest 
neighbours and cp, are independent random variables uniformly distributed between 0 
and 2n. 

The utility of the second term in Hamiltonian (1) is as a model for the effect of 
substrate randomness on layers of absorbed atoms. 

Hamiltonian (1) has been investigated using renormalisation group techniques by 
Houghton et a1 (1981), Cardy and Ostlung (1982) and Villain and Fernandez (1984). 
Cardy and Ostlung used the replica trick and the methods of Jose et a1 (1977) to derive 
a full set of renormalisation group equations that included fully the effect of vortices. 
They predicted that the Kosterlitz-Thouless phase would be stable against the random 
anisotropy for a range of temperature bounded away from zero and given by 

4nJ/p2 < T < nJ/2. 

Both inequalities can be satisfied if p > u8. This result is supported by the real-space 
decimation calculation of Villain and Fernandez. However their calculation excludes 
vortices. 
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Figure 1. Specific heat C, against temperature, 
( 0  = 322, + = 642, x = 128*).Thecurveisaguide 
to the eye only. 

Figure 2. Results for 7 obtained from fitting 
equation (3) to Monte Carlo data. Data obtained 
for system size of 64'. x denote pure system and 
0 anisotropic system. The curve is a guide to the 
eye only. 
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At low temperatures the Cardy and Ostlung equation predicts a re-entrant para- 
magnetic state. Further they suggest that the transition at the low-temperature phase 
boundary may be first order. 

Here preliminary results from a Monte Carlo simulation of Hamiltonian (1) are 
presented for the case of hexagonal anisotropy ( P  = 6) and the case J = h = 1. Com- 
parison is made with the predictions of renormalisation group calculations. A checker- 
board algorithm was used suitable for implementation on a DAP which is a highly parallel 
machine. The simulation was run for times ranging from 12000 to 200000 Monte Carlo 
steps per spin without any significant drift in the results reported here; the time stability 
of the results is thus judged to be good. 

The specific heat was calculated by numerical differentiation of the energy. The 
results are shownin figure 1. The arrow indicates TKT taken from Tobochnic and Chester. 
Three sizes of system shown are 3227 642 and 128'. At a first-order transition the specific 
heat C, scales as (Fisher and Berker 1982) 

C" - 1 2  

where 1 is the linear dimension of the system. No such divergent behaviour is visible on 
figure 1 the only singularity being a kink at about T = 0.4. At  and near this temperature 
a search has been made for bimodal behaviour of the energy fluctuation. Such behaviour 
is characteristic of a first-order transition. No bimodal behaviour was detected using a 
bin size of 0.008. This result together with figure 1 gives no support for the low- 
temperature transition being first order. Clearly the existence of a very weak first-order 
transition cannot be excluded; however, the results here are more consistent with the 
interpretation that there is only a weak singularity at about T = 0.4. 

To determine the nature of the phases the spin pair correlation function has been 
calculated. This is given by 

C(n) = (cos(e, - e,)) n = ( i  = jl 

) denotes thermal averaging and i and j are constrained to lie in the same row. where ( 

cvl.z#pTKT 0.4 0.8 1.2 1'. 0 /. 0.4 0.8 
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In the Kosterlitz-Thouless phase the pair correlation function decays asymptotically 
as 

C(n)  = 1 p  (2) 
Because of the finiteness of the lattice the approach of Tobochnik and Chester has been 
followed and data fitted to the finite lattice form of (2) given by 

c(n) = e-VG(n) 

(3) 1 - eik,n 216 

l 2  G(n) = -2 
k 4 - 2 cos k, - 2 COS k,  ' 

Fits were also attempted to the higher-temperature form of C(n)  given by 

1 (4) c (n )  = e-qG(n) (e-"/€ + e-('-n)/E 

where E is the correlation length, and also to simple exponential decay. 
Below TKT it was not possible to fit the data to (4) or to simple exponential decay. 

This was true for all temperatures below TKT extending down to zero. In this temperature 
range E became of the order of the size of the system and grew with increasing system 
size. This would seem to exclude the possibility that the lower phase transition is re- 
entrant into the paramagnetic state. 

Figure 2 shows the results for q from a fit of C(n)  to form (3). Results for both 
the pure and the anisotropic system are shown together. For a range of temperature 
extending down to below T = 0.4, the values of q obtained for both models agree within 
numerical uncertainty. This is consistent with the prediction of Cardy and Ostlung that 
the anisotropy is irrelevant for a range of temperature bounded away from zero. Below 
T = 0.4 the values of q are clearly seen to diverge. 

These results for C(n)  do not support the theory that the low-temperature phase is 
paramagnetic. Indeed the system appears to be quasiferromagnetic down to T = 0, with 
q becoming renormalised at low temperatures. Some support for this interpretation 
appears in the work of Villain and Fernandez. Their results for q in what they call the 
two-parameter approximation and given by their equations (4.12) and (4.13) show that 
q is renormalised at low temperature and the system remains quasiferromagnetic. 

Thus Monte Carlo simulation has produced partial agreement with the results of 
Cardy and Ostlung. However, simulation has not produced any evidence for the low- 
temperature transition being first order or the low-temperature phase being para- 
magnetic. The effect of varyingp and h as well as the time-dependent properties remain 
to be investigated and will be reported subsequently. 

The support of the SERC is gratefully acknowledged, as is the assistance of the Centre 
for Parallel Computing at Queen Mary College, London University. Discussions with 
Professor M A Moore are gratefully acknowledged. 
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